
ECE 598 YM Homework 1

Assigned September 6, Due September 16

In this homework, you will gain familiarity with the basic algorithms and sufficient
conditions for sparse recovery.

1. Implementation of OMP. Implement the basic orthogonal matching pursuit al-
gorithm in Matlab [This was assigned on August 28]. Submit a printout of your
code.

2. `1 as a linear program. Show how the `1-minimization problem

min ‖x‖1 subject to y = Ax

can be converted to a standard form linear program

min cT z subject to Dz = e, Fz ≤ g.

Hint: first consider a scalar α. Write down a linear program whose solution is
|α|. Generalize.

Based on your conversion, write a Matlab function whose inputs are y andA, and
whose output is the minimum `1-norm solution x̂1. You can either implement an
LP solver, or use Matlab’s linprog. Submit a printout of your code.

For the remainder of this homework, please use your solutions to questions 1 and
2. For future homeworks, and for your course project, you can feel free to use

http://www.acm.caltech.edu/l1magic/
http://sparselab.stanford.edu/

or any of the many of sparse recovery packages available at

http://www.dsp.ece.rice.edu/cs/#sof.

3. Mutual coherence for sparse recovery. In lecture, we’ve discussed several
sufficient conditions for sparse recovery involving the mutual coherence µ(A) .=
maxi6=j

〈ai,aj〉
‖ai‖2‖aj‖2 .
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(a) In terms of m and n, obtain [by searching the literature or deriving it your-
self] a good lower bound on µ(A) that holds for all m × n matrices A.

(b) In class we gave a simple condition based on µ(A) guaranteeing that

• The sparsest solution to y = Ax is unique.
• Both OMP and `1-minimization recover this solution.

From part (a), as a function of m and n, derive an upper bound on the
number of nonzeros that the coherence-based results can guarantee we can
recover.

In the limit as m → ∞ and m/n → δ < 1, what is the order of growth of
your bound? [Is it O(m)? O(logm)?]

(c) Setm = 100, n = 400. Generate anm×nmatrix with entries iidN (0, 1).
Compute µ(A). Based on this value of µ(A), how many nonzeros can we
guarantee to recover by either OMP or `1?

Generate a sequence of n-dimensional vectors x1, x2 . . . xn, by letting xk

be the vector whose first k entries are 1 and whose remaining n− k entries
are 0. For each xk, set yk = Axk. Use OMP and `1-minimization to
compute sparse solutions x̂k to the system of equations yk = Axk. Define
the breakdown point as the smallest k for which x̂k 6= xk.1 Compute the
breakdown points of the two algorithms.

Repeat the above experiment several times. Plot and submit histograms
of the following: 1. The number of nonzeros we can guarantee to recover
based on µ(A). 2. The breakdown point of OMP. 3. The breakdown point
of `1-minimization.

(d) How does the actual performance of the algorithms compare to the bound
from µ(A)? How do the two algorithms’ performances compare?

READ BOTH, BUT ANSWER ONLY ONE OF THE FOLLOWING TWO
PROBLEMS:

4. Another motivation for `1. In lecture, we mentioned that the `1 norm is a
natural convex surrogate for `0 quasi-norm. In convex analysis, if f(·) is any
function on a convex domain Γ, the convex envelope of f is defined as the largest
convex function g such that g(x) ≤ f(x) for all x ∈ Γ.

(a) Show that ‖·‖1 is the convex envelope of ‖·‖0 on the domain {x : ‖x‖∞ ≤
1}.

(b) For a general function f , what is the relationship between the set of global
minima of f and the set of global minima of its convex envelope?

1Due to numerical imprecision, you will need to compare ‖x̂k − xk‖ to a small threshold.
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(c) Think about (a) and (b). Why does this not imply that solving

min ‖x‖1 subject to y = Ax

always recovers the sparsest solution to the system y = Ax?

5. `0 solutions. (a) Write a Matlab function solves the optimization problem

min ‖x‖0 subject to y = Ax.

Hint: use Matlab’s built-in function nchoosek(1:n,k) to enumerate all sub-
sets of k columns.

Submit your code.

(b) For an m× n Gaussian matrix A, what is spark(A)?

(c) Set n = 2m, and choose m small enough that your code from part (a) does
not die when handed a problem of sizem×n. Generate anm×nGaussian matrix
A. Generate vectors x0 of varying sparsity, from ‖x0‖0 = 1 up to ‖x0‖0 = n.
Repeat several times. When at what sparsity ‖x0‖0 does the solution given by
your code start to differ from x0?

(d) Think about your expression for spark(A) from part (b). Is the result of (c)
surprising? Why or why not?
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