ECE 598 YM Homework 1

Assigned September 6, Due September 16

In this homework, you will gain familiarity with the basic algorithms and sufficient conditions for sparse recovery.

- 1. **Implementation of OMP.** Implement the basic orthogonal matching pursuit algorithm in Matlab [This was assigned on August 28]. Submit a printout of your code.
- 2. ℓ^1 as a linear program. Show how the ℓ^1 -minimization problem

$$\min \|x\|_1$$
 subject to $y = Ax$

can be converted to a standard form linear program

$$\min c^T z$$
 subject to $Dz = e, Fz \le g.$

Hint: first consider a scalar α . Write down a linear program whose solution is $|\alpha|$. Generalize.

Based on your conversion, write a Matlab function whose inputs are y and A, and whose output is the minimum ℓ^1 -norm solution \hat{x}_1 . You can either implement an LP solver, or use Matlab's linprog. Submit a printout of your code.

For the remainder of this homework, please use your solutions to questions 1 and 2. For future homeworks, and for your course project, you can feel free to use

```
http://www.acm.caltech.edu/l1magic/
http://sparselab.stanford.edu/
```

or any of the many of sparse recovery packages available at

3. Mutual coherence for sparse recovery. In lecture, we've discussed several sufficient conditions for sparse recovery involving the mutual coherence $\mu(A) \doteq \max_{i \neq j} \frac{\langle a_i, a_j \rangle}{\|a_i\|_2 \|a_j\|_2}$.

- (a) In terms of m and n, obtain [by searching the literature or deriving it yourself] a good lower bound on $\mu(A)$ that holds for all $m \times n$ matrices A.
- (b) In class we gave a simple condition based on $\mu(A)$ guaranteeing that
 - The sparsest solution to y = Ax is unique.
 - Both OMP and ℓ^1 -minimization recover this solution.

From part (a), as a function of m and n, derive an upper bound on the number of nonzeros that the coherence-based results can guarantee we can recover.

In the limit as $m \to \infty$ and $m/n \to \delta < 1$, what is the order of growth of your bound? [Is it O(m)? $O(\log m)$?]

(c) Set m=100, n=400. Generate an $m \times n$ matrix with entries iid $\mathcal{N}(0,1)$. Compute $\mu(A)$. Based on this value of $\mu(A)$, how many nonzeros can we guarantee to recover by either OMP or ℓ^1 ?

Generate a sequence of n-dimensional vectors $x_1, x_2 \dots x_n$, by letting x_k be the vector whose first k entries are 1 and whose remaining n-k entries are 0. For each x_k , set $y_k = Ax_k$. Use OMP and ℓ^1 -minimization to compute sparse solutions \hat{x}_k to the system of equations $y_k = Ax_k$. Define the *breakdown point* as the smallest k for which $\hat{x}_k \neq x_k$. Compute the breakdown points of the two algorithms.

Repeat the above experiment several times. Plot and submit histograms of the following: 1. The number of nonzeros we can guarantee to recover based on $\mu(A)$. 2. The breakdown point of OMP. 3. The breakdown point of ℓ^1 -minimization.

(d) How does the actual performance of the algorithms compare to the bound from $\mu(A)$? How do the two algorithms' performances compare?

READ BOTH, BUT ANSWER ONLY ONE OF THE FOLLOWING TWO PROBLEMS:

- 4. **Another motivation for** ℓ^1 . In lecture, we mentioned that the ℓ^1 norm is a natural convex surrogate for ℓ^0 quasi-norm. In convex analysis, if $f(\cdot)$ is any function on a convex domain Γ , the *convex envelope* of f is defined as the largest convex function g such that $g(x) \leq f(x)$ for all $x \in \Gamma$.
 - (a) Show that $\|\cdot\|_1$ is the convex envelope of $\|\cdot\|_0$ on the domain $\{x: \|x\|_{\infty} \le 1\}$.
 - (b) For a general function f, what is the relationship between the set of global minima of f and the set of global minima of its convex envelope?

 $^{^1\}mathrm{Due}$ to numerical imprecision, you will need to compare $\|\hat{x}_k - x_k\|$ to a small threshold.

(c) Think about (a) and (b). Why does this not imply that solving

$$\min \|x\|_1$$
 subject to $y = Ax$

always recovers the sparsest solution to the system y = Ax?

5. ℓ^0 solutions. (a) Write a Matlab function solves the optimization problem

$$\min \|x\|_0$$
 subject to $y = Ax$.

Hint: use Matlab's built-in function nchoosek(1:n,k) to enumerate all subsets of k columns.

Submit your code.

- (b) For an $m \times n$ Gaussian matrix A, what is $\operatorname{spark}(A)$?
- (c) Set n=2m, and choose m small enough that your code from part (a) does not die when handed a problem of size $m \times n$. Generate an $m \times n$ Gaussian matrix A. Generate vectors x_0 of varying sparsity, from $\|x_0\|_0 = 1$ up to $\|x_0\|_0 = n$. Repeat several times. When at what sparsity $\|x_0\|_0$ does the solution given by your code start to differ from x_0 ?
- (d) Think about your expression for $\mathrm{spark}(A)$ from part (b). Is the result of (c) surprising? Why or why not?