Homework is due at the beginning of class on the due day!

Problems:

1. In problem 6 of homework 5, replace the deterministic state equation by the stochastic one:

 \[\dot{x} = -x + u - 1 + w, \quad x(0) = 1 \]

 where \(w \) is the standard white Gaussian noise (WGN), and also replace \(J \) by its expected value. Derive the state-feedback controller that minimizes \(E\{J\} \), and obtain an expression for the minimum value of \(E\{J\} \).

2. Consider a variation of the standard LQG control problem with perfect state measurements discussed in class, where now the state \(x(t), t \geq t_0 \) is not available continuously, but only sample-wise. That is, we have a partition of the time interval \([t_0, t_f] = [t_0, t_1] \cup [t_1, t_2] \ldots \cup [t_{n-1}, t_n = t_f]\), and only sampled values \(x(t_i), t_i = 0, 1, \ldots, n - 1, \) of the state are available. Permissible controls are now assumed to be in the form \(u(t, x(t_i)) \) for \(t \in [t_i, t_{i+1}) \). Obtain the optimal control policy. [Hint: try to decouple the “deterministic” part and the “stochastic” part of the process during each interval.]

3. Let \(a \) be a scalar Gaussian random variable with mean zero an variance \(\rho \), and \(x \) be a signal described by

 \[\dot{x} = a, \quad x(0) = 1, \dot{x}(0) = 1. \]

 The signal \(x \) is not measured directly, but a noisy version \(y \) of \(x \) is available:

 \[y = x + v, \]

 where \(v \) is the standard white Gaussian noise. Construct a Kalman filter for estimating \(x(t) \), and study the limiting behavior of the Kalman gain and the error (co)variance as \(t \to \infty \).

4. Consider the scalar LQG optimal control problem with dynamics

 \[\dot{x} = \frac{t^2}{2} + u + w, \quad x(0) = 1 \]

 and cost function

 \[J = E\left\{ x(1)^2 + \int_0^1 u(t)^2 \, dt \right\}, \]

 where \(w \) is the standard white Gaussian noise.

 (a) Determine the optimal control policy under perfect state information.

 (b) Do the same under open-loop information (no information about the actual state available).

 (c) Let \(J_f \) denote the minimum value of \(J \) in (a) and \(J_o \) denote the minimum value in (b). Evaluate \(J_o - J_f \) without computing \(J_o \) and \(J_f \) separately.
5. You are given a scalar stochastic system:
\[\dot{x} = u + 1.5w, \quad x(0) = 1, \]
and noisy state measurements:
\[y = x + v, \quad t \geq 0, \]
where \(w \) and \(v \) are independent standard white Gaussian noises. Let the cost function be exponentially discounted:
\[J = E \left\{ \int_0^\infty e^{-2t} \left[x^2 + u^2 \right] dt \right\}. \]
Find a stationary controller \(u^*(\tilde{x}(t)) \), that minimizes \(J \). What is the corresponding value of \(J \)?