Homework is due at the beginning of class on the due day!

Problems:

1. **(Smooth Stabilizability).** Assume that the control system
\[\dot{x} = f(x, u) \]
is smoothly exponentially stabilizable at \(0 \in \mathbb{R}^n \), that is, there exists a smooth control law \(u = k(x) \) such that \(0 \) is a locally exponentially stable equilibrium of the closed loop system \(\dot{x} = f(x, k(x)) \). Prove that the extended system
\[\begin{align*}
\dot{x} &= f(x, z) \\
\dot{z} &= h(x, z) + u,
\end{align*} \]
where \(h \) is a smooth function, is also exponentially stabilizable by smooth feedback. (**Hint:** Try a Lyapunov function \(W(x, z) = V(x) + \frac{1}{2} |z - k(x)|^2 \), where \(V \) is an appropriate Lyapunov function for the original system.)

2. **(Rigid Robot Control).** Consider a frictionless rigid 2-link robot manipulator (or double pendulum) with control torques \(u_1 \) and \(u_2 \) applied at the joints. The dynamics of such a robot-arm may be obtained via the Euler-Lagrange formalism which yields:
\[M(\theta)\ddot{\theta} + C(\theta, \dot{\theta}) + k(\theta) = u, \]
where \(\theta = (\theta_1, \theta_2)^T \), \(\theta_i \) are the joint angles, and \(u = (u_1, u_2)^T \). The term \(k(\theta) \) represents the gravitational force and \(C(\theta, \dot{\theta}) \) reflects the centripetal and Coriolis forces. The matrix \(M(\theta) \) has everywhere positive determinant.

(a) Using as outputs the angles \(\theta \), find its relative degree and convert it to a normal form.
(b) What are the zero dynamics of the system?

3. **(Invariant Distributions, Continued).** Recall that the notion of a distribution invariant with respect to a vector field was defined in Homework 5 (problem 5).

(a) Let \(X_1, \ldots, X_k \) be analytic vector fields on \(\mathbb{R}^n \). Define \(\mathcal{L} \) to be the vector space of all vector fields of the form \(\sum_{i=1}^t \alpha_i(x)Y_i(x) \), where \(\alpha_i \) are smooth functions and \(Y_i \) are vector fields of the form
\[[X_{i_1}, [X_{i_2}, \cdots, [X_{i_{r-1}}, X_{i_r}], \cdots]], \]
i.e., nested Lie brackets of vector fields \(X_i \) (\(r \geq 1, 1 \leq i_1, \ldots, i_r \leq k \)). For each \(x \in \mathbb{R}^n \), define a distribution \(\mathcal{C} \) by
\[\mathcal{C}(x) = \{ Z(x) : Z \in \mathcal{L} \}. \]
Show that C is invariant with respect to X_1, \ldots, X_k. Moreover, show that if D is any other distribution containing X_1, \ldots, X_k and invariant with respect to X_1, \ldots, X_k, then $C(x) \subseteq D(x)$, for all $x \in \mathbb{R}^n$. That is, C is the smallest distribution with these two properties. We write $C = \text{Lie}(X_1, \ldots, X_k)$ to indicate that C is the “Lie algebra” generated by vector fields X_1, \ldots, X_k.

(b) Show that C is involutive.

(c) Consider an affine control system $\dot{x} = f(x) + g(x)u$, where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and f and $g = [g_1 \cdots g_m]$ are analytic. The accessibility distribution of this system is equal to $\text{Lie}(f, g_1, \ldots, g_m)$. Now consider the system

\[
\begin{align*}
\dot{x}_1 &= x_2^2 \\
\dot{x}_2 &= u,
\end{align*}
\]

find its accessibility distribution and the set of reachable points.

4. (Rocket Outside the Atmosphere). Consider the dynamics of a rocket outside the atmosphere. The forces which act on the rocket are the gravitational force and the force as delivered by the rocket motor. The control variable is the angle α expressing the direction of the force as delivered by the rocket motor. Take state space variables $x_1 = r$, $x_2 = \theta$, $x_3 = \dot{r}$, $x_4 = \dot{\theta}$, where (r, θ) are polar coordinates in the plane containing the center of the earth and the trajectory of the rocket. Then the dynamics are given by

\[
\begin{align*}
\dot{x}_1 &= x_3 \\
\dot{x}_2 &= x_4 \\
\dot{x}_3 &= -\frac{gR^2}{x_1^2} + \frac{T}{m} \cos u + x_1 x_4 \\
\dot{x}_4 &= -\frac{2x_3 x_4}{x_1} + \frac{T}{m x_1} \sin u.
\end{align*}
\]

Here m is the mass of the rocket, g the gravitational constant, and R the radius of the earth. Note that the system is not affine.

(a) To obtain an affine system, extend the given system by adding the equation $\dot{u} = w$ and taking $z = (x, u)$ to be the new state space variable, and w to be the new control variable. Write down the extended system (E).

(b) Let f and g be the drift and input vector field of the extended system respectively. Compute $[f, g], [f, [f, g]], [f, [f, [f, g]]], \text{ and } [g, [f, g]]$.

(c) Show that (E) is not exactly feedback linearizable.

5. (Connecting Points). Consider the control system (S) on \mathbb{R}^3

\[
\begin{align*}
\dot{x} &= u \\
\dot{y} &= v \\
\dot{z} &= -vx,
\end{align*}
\]

where $u, v \in \mathbb{R}$ are the inputs.

(a) Show that (S) is controllable. Show that any two points can be joined by a piecewise smooth control trajectory, corresponding to a piecewise input.
(b) Given any two points $p_0, p_1 \in \mathbb{R}^3$, construct a smooth control trajectory connecting p_0 and p_1.

(c, optional) For $p, q \in \mathbb{R}^3$, define $d_*(p, q)$ as the infimum of the length of all control trajectories connecting p and q. Show that d_* defines a metric (i.e., distance) on \mathbb{R}^3, that is, show that $d_*(p, q) \geq 0$, $d_*(p, q) = 0$ iff $p = q$, $d_*(q, p) = d_*(p, q)$, and $d_*(p_0, p_2) \leq d_*(p_0, p_1) + d_*(p_1, p_2)$. d_* is called a sub-Riemannian (or Carnot-Carathéodory) metric. Then show that (at least locally speaking) there exists a constant $C > 0$ such that for any two points p, q with different z-coordinates,

$$d_*(p, q) \leq C|p - q|^{1/2},$$

where $|\cdot|$ denotes the Euclidean norm.