Similarity Transformations

As mentioned in class, if \(A \in \mathbb{R}^{n \times n} \) and \(B \in \mathbb{R}^{n \times n} \) are real square matrices related by
\[
B = P^{-1}AP,
\]
where \(P \in \mathbb{R}^{n \times n} \) is a nonsingular matrix, then \(A \) and \(B \) are said to be similar. Since
\[
\det(Is - A) = \det(P^{-1}) \det(Is - A) \det(P) = \det(Is - B),
\]
(1)
it follows that similar matrices have the same characteristic equation. If \(A \) is a real symmetric matrix, then its eigenvalues are all real and the eigenvectors of \(A \) can be taken to be orthogonal. If we choose \(P \) to be a matrix whose columns are the orthonormal eigenvectors of \(A \) (which is clearly nonsingular since the eigenvectors are linearly independent), then the matrix \(B = P^{-1}AP \) is both real and diagonal. Hence we have

Theorem 1 (Similarity Transformation for Real Symmetric Matrix) Any real symmetric matrix \(A \in \mathbb{R}^{n \times n} \) can be diagonalized by a similarity transformation, i.e., \(A = P^{-1} \Lambda P \) for some invertible \(P \in \mathbb{R}^{n \times n} \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \) where \(\lambda_i \)'s are the real eigenvalues of \(A \).

Such a simplification (reduction) however is not generally true for non-symmetric real matrices. Two situations may occur instead: 1. \(A \) has complex eigenvalues (even if it can be diagonalized); 2. \(A \) simply cannot be diagonalized at all. In view of this, a relevant question is: To what extent can an arbitrary real square matrix be simplified by a real or complex similarity transformation?

First, we consider the case that we only allow \(P \) to be a real matrix in \(\mathbb{R}^{n \times n} \). The answer to this is provided in the following theorem, whose proof is quite beyond the scope of this course.

Theorem 2 (Real Similarity Transformation for Real Matrix) If \(A \in \mathbb{R}^{n \times n} \) is a real square matrix, there exists a real nonsingular matrix \(P \in \mathbb{R}^{n \times n} \) such that \(B = P^{-1}AP \) has the form
\[
B = \begin{bmatrix}
B_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & B_2 & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & B_k & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & B_{k+1} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & B_{k+2} & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & B_l
\end{bmatrix}
\]
(2)
where \(B_1, \ldots, B_k \) are in the form: for \(1 \leq i \leq k \),
\[
B_i = \begin{bmatrix}
S_i & I_{2 \times 2} & 0 & \cdots & 0 \\
0 & S_i & I_{2 \times 2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & S_i & I_{2 \times 2} \\
0 & 0 & \cdots & 0 & S_i
\end{bmatrix}, \quad S_i = \begin{bmatrix}
\sigma_i & \omega_i \\
-\omega_i & \sigma_i
\end{bmatrix}
\]
(3)
and \(B_{k+1}, \ldots, B_l \) are in the form: for \(k + 1 \leq j \leq l \),

\[
B_j = \begin{bmatrix}
s_j & 1 & 0 & \cdots & 0 \\
0 & s_j & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & s_j & 1 \\
0 & 0 & \cdots & 0 & s_j
\end{bmatrix}, \quad s_j \in \mathbb{R}.
\]

Second, we allow \(P \) to be a (possibly) complex matrix in \(\mathbb{C}^{n \times n} \). Note that since now the space of all possible similarity transformations is enlarged, the resulting reduced form of \(A \) can be simpler than that given in Theorem 2.

Theorem 3 ((Complex) Similarity Transformation for Real Matrix) If \(A \in \mathbb{R}^{n \times n} \) is a real square matrix, there exists a possibly complex nonsingular matrix \(P \in \mathbb{C}^{n \times n} \) such that \(B = P^{-1}AP \) has the form

\[
B = \begin{bmatrix}
B_1 & 0 & \cdots & 0 & 0 \\
0 & B_2 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & B_{m-1} & 0 \\
0 & 0 & \cdots & 0 & B_m
\end{bmatrix}
\]

where \(B_1, \ldots, B_m \) are in the form: for \(1 \leq i \leq m \),

\[
B_i = \begin{bmatrix}
s_i & 1 & 0 & \cdots & 0 \\
0 & s_i & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & s_i & 1 \\
0 & 0 & \cdots & 0 & s_i
\end{bmatrix}, \quad s_i \in \mathbb{C}.
\]

In Theorem 3, the matrix \(B \) is called the *Jordan form* of matrix \(A \), and \(s_i \)'s are simply all the (possibly complex) eigenvalues of \(A \). Note the same statement holds even for the case when the matrix \(A \) itself is complex. The proof of Theorem 3 is relatively easy and can be found in most classic books on linear algebra. One useful application of the Jordan form is to find (or define) the so called *minimal polynomial* of \(A \), i.e., the polynomial \(\Psi(s) \) of the lowest degree such that \(\Psi(A) = 0_{n \times n} \). Another application of the Jordan form is to prove the so called *Cayley-Hamilton* theorem.

Theorem 4 (Cayley-Hamilton) For any square matrix \(A \in \mathbb{C}^{n \times n} \), let \(\chi(s) = \det(sI - A) \) be the characteristic polynomial of \(A \). Then we always have \(\chi(A) = 0_{n \times n} \).

Using the Jordan form of \(A \) from the previous theorem, the proof is straightforward.