1. True or False (20 points)

(a) X_1 is a Gaussian random variable, and so is X_2. Then X_1 and X_2 are independent if they are uncorrelated.

No.

Unless X_1 and X_2 are jointly Gaussian, this property can not hold. For a counter example, see handout “Gaussian random vectors” pp. 18.

(b) If A is independent of B_1 and B_2 respectively, and $B_1 \subseteq B_2$, then A is also independent of $(B_2 - B_1)$.

Yes.

Since $P(A(B_2 - B_1)) = P(AB_2 - AB_1) = P(AB_2) - P(AB_1)$ by using the fact that $AB_1 \subseteq AB_2$, now with $P(AB_2) = P(A)P(B_2)$ and $P(AB_1) = P(A)P(B_1)$, one has that $P(A(B_2 - B_1)) = P(A)P(B_2 - B_1)$ by noting that $B_1 \subseteq B_2$.

(c) Given two random variables X and Y, if $E[f(X)g(Y)] = E[f(X)]E[g(Y)]$ for all continuous functions $f(\cdot), g(\cdot)$, then X and Y are independent.

Yes.

Let $f(\cdot), g(\cdot)$ be characteristic functions of X, Y, then

$$
\phi_{X,Y}(\omega, \theta) = E[f(X)g(Y)] = E[f(X)]E[g(Y)] = \phi_X(\omega)\phi_Y(\theta)
$$

which gives the independence result.

Or, consider the corresponding probability triple (Ω, \mathcal{F}, P) with respect to X, Y. Let $\forall A \times B \in \mathcal{F}$ and $f(\cdot) = 1_A(\cdot)$, $g(\cdot) = 1_B(\cdot)$, where 1 denotes the indication function ($1_A(\omega) = 1, \omega \in A$, or $1_A(\omega) = 0, \omega \notin A$), then

$$
E[f(X)g(Y)] = E[1_A(X)1_B(Y)] = P(X \in A, Y \in B)
$$

and

$$
E[f(X)] = E[1_A(X)] = P(X \in A), E[g(Y)] = E[1_B(Y)] = P(Y \in B).
$$

Therefore, X,Y are independent.

(d) If X, Z are two independent random variables, then $E[X|Y, Z] = E[X|Y]$ for any random variable Y.

No.

Consider a counter-example: with $Y = Z + X$, then $E[X|Y, Z] = Y - Z = X$ which completely recovers X, whereas $E[X|Y] = E[X|Z + X]$ only gives a conditional expectation. Or, one could use density function to see that in general \(\frac{f_{X,Y,Z}(x,y,z)}{f_{Y,Z}(y,z)} \neq \frac{f_{X,Y}(x,y)}{f_Y(y)} \) even though X, Z are independent.

2. Conditional distribution (20 points)

Let X, Y, Z be independent and identically distributed non-negative rv’s with common density $f(x) = \exp(-x)$ for $x \geq 0$.

(a) the pdf of X, conditional the event that $X \leq 1$.

(b) the pdf of X, conditional on the event $X \leq 1$ AND $X + Y \geq 1$.
(c) the joint pdf of X and Y, conditional on the event $X + Y \leq 1$ AND $X + Y + Z \geq 1$.
(d) Show that the pdf of X conditional on the event $X + Y \leq 1$ AND $X + Y + Z \geq 1$ is the same as the pdf of the rv $W = \min\{U_1, U_2\}$, where U_1 and U_2 are two independent and identically distributed rv’s uniformly distributed in $[0, 1]$.

Solution:
(a) We start from finding cumulative density function

$$F_X(x|X \leq 1) = P\{X \leq x|X \leq 1\} = \frac{P\{X \leq x, X \leq 1\}}{P\{X \leq 1\}}$$

$$= \begin{cases}
\frac{\int_0^x e^{-\alpha} d\alpha}{\int_0^1 e^{-\alpha} d\alpha} = \frac{1 - e^{-x}}{1 - e^{-1}} & \text{when } x \geq 1 \\
\frac{\int_0^1 e^{-\alpha} d\alpha}{\int_0^1 e^{-\alpha} d\alpha} = 1 & \text{when } 0 \leq x \leq 1
\end{cases}$$

Hence, the probability density function is given by

$$f_X(x|X \leq 1) = \frac{d}{dx}F_X(x|X \leq 1) = \begin{cases}
0 & x \geq 1 \\
\frac{e^{-x}}{1 - e^{-1}} & 0 \leq x \leq 1
\end{cases}$$

(b) Similarly, let $0 \leq x \leq 1$, one has

$$F_X(x|X \leq 1, X + Y \leq 1) = \frac{P\{X \leq x, X \leq 1, X + Y \leq 1\}}{P\{X \leq x, X + Y \leq 1\}}$$

$$= \frac{\int_0^x \int_0^{1-x} e^{-u} e^{-y} du \, dy}{\int_0^1 \int_0^{1-x} e^{-u} e^{-y} du \, dy}$$

$$= \frac{1 - e^{-x} - e^{-1}x}{1 - 2e^{-1}}$$

Note that the integrations in the above expression are double integrals. The density function is then given by

$$f_X(x|X \leq 1, X + Y \leq 1) = \begin{cases}
0 & \text{else} \\
\frac{e^{-x} - e^{-1}}{1 - 2e^{-1}} & 0 \leq x \leq 1
\end{cases}$$

(c) Similar to part b), we consider $0 \leq x \leq 1, 0 \leq y \leq 1$ with $x + y \leq 1$,

$$F_{X,Y}(x,y|X + Y \leq 1, X + Y + Z \geq 1) = \frac{P\{X \leq x, Y \leq y, X + Y \leq 1, X + Y + Z \geq 1\}}{P\{X \leq x, Y \leq y, X + Y \leq 1\}}$$

$$= \frac{\int_0^x \int_0^{1-x} \int_0^\infty e^{-u} e^{-v} e^{-z} du \, dv \, dz}{\int_0^1 \int_0^{1-x} \int_0^\infty e^{-u} e^{-v} e^{-z} du \, dv \, dz}$$

$$= \frac{1}{2} e^{-1} xy - 2xy$$

2
Hence,
\[
F_{X,Y}(x,y | X+Y \leq 1, X+Y+Z \geq 1) = \begin{cases}
2xy & 0 \leq x \leq 1, 0 \leq y \leq 1, x+y \leq 1 \\
1 & x \geq 0, y \geq 0, x+y \geq 1
\end{cases}
\]
\[
f_{X,Y}(x,y | X+Y \leq 1, X+Y+Z \geq 1) = \begin{cases}
2 & 0 \leq x \leq 1, 0 \leq y \leq 1, x+y \leq 1 \\
0 & x \geq 0, y \geq 0, x+y \geq 1
\end{cases}
\]

(d) Since the density of \{ \{X,Y\} | X+Y \leq 1, X+Y+Z \geq 1 \} is obtained in part c), the density on X can be obtained by integrating this joint density function:
\[
f_X(x | X+Y \leq 1, X+Y+Z \geq 1) = \int_0^{1-x} f_{X,Y}(x,y | X+Y \leq 1, X+Y+Z \geq 1) dy = 2(1-x), \quad 0 \leq x \leq 1.
\]

Note that conditioned on \{ X+Y \leq 1, X+Y+Z \geq 1 \}, the random variable Y can only take values inside \([0, 1-x]\), which is the upper and lower limits used in the above formula.

Let \(W = \min(U_1, U_2) \) where \(U_1, U_2 \) are i.i.d uniformly distributed random variables in \([0, 1]\). Consulting the lecture notes,
\[
F_W(w) = F_{U_1}(w) + F_{U_2}(w) - F_{U_1}(w)F_{U_2}(w) = 2w - w^2, \quad 0 \leq w \leq 1.
\]

Hence, the density of \(W \) is given by
\[
f_W(w) = \begin{cases}
2(1-w) & 0 \leq w \leq 1 \\
0 & \text{else}
\end{cases}
\]

This has the same form as the density of \(X \).

3. MMSE and LLSE (20 points)

Let \(X \) be a scalar random variable with a known distribution that is symmetric about 0 (hence you may assume all moments of \(X \) are known). Let \(Y = X^3 \) be your observation. Express your answers in terms of \(Y \) and the moments of \(X \):

(a) What is the best estimate \(g(Y) \) for \(X \) which minimizes the mean squared error \(E[(g(Y) - X)^2] \)?

Solution: The best estimate \(g(Y) = Y^{\frac{1}{3}} \) which renders the mean squared error zero.

(b) What is the best linear estimate \(aY + b \) for \(X \) which minimizes the squared error \(E[(aY + b - X)^2] \)?

Solution: First, noting that \(E[X] = 0 \) by symmetry, it is obvious \(b = 0 \). Then, setting first order derivative of \(E[(aY - X)^2] \) to zero, one obtains
\[
a = \frac{\text{cov}(X,Y)}{\text{var}(Y)} = \frac{E[Y^{\frac{4}{3}}]}{E[Y^2]} \]
(see problem set #3 solution set for details).

(c) Now suppose you have two more observations: \(Z_1 = X + W \) and \(Z_2 = X - 2W \) where \(W \) is \(N(0,1) \) and independent from \(X \) and \(Y \). What is the best linear estimate for \(X \) given \(Y, Z_1 \) and \(Z_2 \)?

Solution: Noting that \(X \) can be completely recovered from \(Z_1, Z_2 \), the best linear estimate is given by \(X = \frac{1}{3}(2Z_1 + Z_2) + 0 \cdot Y \).

(d) Let \(V = X^2 \), what is the best estimate \(g(V) \) for \(X \) which minimizes the mean squared error \(E[(g(V) - X)^2] \)? Explain.

Solution: With \(V = X^2 \), it follows the estimate of \(X = \pm \sqrt{V} \) with equal probabilities. Then, the best estimate is \(g(V) = 0 \) since otherwise the mean squared error would be larger.
4. Summation and multiplication of random sequences (20 points)

Let \(X_n \rightarrow X \) and \(Y_n \rightarrow Y \) in probability.

(a) Prove that \(aX_n + bY_n \rightarrow aX + bY \) in probability for any constants \(a, b \in \mathbb{R} \).

Solution: The conclusion is trivial if \(a, b = 0 \). Hence, we assume that \(a, b \neq 0 \). For \(\forall \epsilon > 0 \), let

\[A = \{|a||X_n - X| + |b||Y_n - Y| > \epsilon\} \]

then

\[
P(|(aX_n + bY_n) - (aX + bY)| > \epsilon) \\
\leq P(A) = P(A, |X_n - X| > \frac{\epsilon}{2|a|}) + P(A, |X_n - X| \leq \frac{\epsilon}{2|a|}) \\
\leq P(|X_n - X| > \frac{\epsilon}{2|a|}) + P(|Y_n - Y| > \frac{\epsilon}{2|b|}, |X_n - X| \leq \frac{\epsilon}{2|a|}) \\
\leq P(|X_n - X| > \frac{\epsilon}{2|a|}) + P(|Y_n - Y| > \frac{\epsilon}{2|b|}) \\
\rightarrow 0, \ \epsilon \rightarrow 0.
\]

Here, we repeatedly use the simple inequality \(P(A) \leq P(B) \) for sets (events) \(A \subseteq B \).

(b) Prove that \(X_nY_n \rightarrow XY \) in probability.

Solution:

Assume \(X \) is finite a.s., i.e. \(P\{|X| < \infty\} = 1 \), and so does \(Y \). Now, we first prove that if \(X_n \rightarrow X \) i.p., then \(X_nY \rightarrow XY \) i.p.. For \(\forall N \geq 1 \), note the following inequality,

\[
P(|X_nY - XY| > \epsilon) \\
= P(|Y||X_n - X| > \epsilon, |Y| < N) + P(|Y||X_n - X| > \epsilon, |Y| \geq N) \\
\leq P(|X_n - X| > \epsilon N, |Y| < N) + P(|Y| \geq N) \\
\leq P(|X_n - X| > \epsilon N) + P(|Y| \geq N) \\
\rightarrow 0, \ \ N \rightarrow \infty, \ \epsilon \rightarrow 0.
\]

Next, let \(B = \{|X_nY_n - XY_n| + |XY_n - XY| > \epsilon\} \), the convergence of \(X_nY_n \) can be proved using the following relationship,

\[
P(|X_nY_n - XY| > \epsilon) = P(|X_nY_n - XY_n + XY_n - XY| > \epsilon) \\
\leq P(B) = P(B, |XY_n - XY| > \epsilon/2) + P(B, |XY_n - XY| \leq \epsilon/2) \\
\leq P(|XY_n - XY| > \epsilon/2) + P(|X_nY_n - XY_n| > \epsilon/2, |XY_n - XY| \leq \epsilon/2) \\
\leq P(|XY_n - XY| > \epsilon/2) + P(|X_nY_n - XY_n| > \epsilon/2) \\
\rightarrow 0, \ \epsilon \rightarrow 0.
\]

Or, one first prove (using a similar argument) that if \(X_n \rightarrow X \) i.p., then \(X_n^2 \rightarrow X^2 \) i.p. Next, using the fact that \(X_nY_n = [(X_n + Y_n)^2 - (X_n - Y_n)^2]/4, XY = [(X + Y)^2 - (X - Y)^2]/4 \) and the conclusion from part a), it is straightforward to see \(X_nY_n \rightarrow XY \) i.p.

5. Characteristic function (20 points)

Suppose \(X \) and \(Y \) are independent and identically distributed with means 0 and variances 1 and let \(\phi(\omega) \) be the common characteristic function, i.e. \(\phi(\omega) = E[e^{i\omega X}] = E[e^{i\omega Y}] \). Furthermore suppose that \(E[X - Y |X + Y] = 0 \) and \(\text{Var}(X - Y |X + Y) = 2 \).

(a) Deduce that

\[
\phi(\omega)^2 = \phi'(\omega)^2 - \phi(\omega)\phi''(\omega), \tag{1}
\]

Solution: Let \(U \equiv X + Y, V \equiv X - Y \). Then, their joint characteristic function is given by

\[
\psi(\omega, \theta) = E[e^{i\omega U + i\theta V}] = E[e^{i\omega (X + Y) + i\theta (X - Y)}] = \phi(\omega + \theta)\phi(\omega - \theta). \tag{2}
\]

Using what is given,

\[
\frac{\partial^2}{\partial \theta^2} \psi(\omega, \theta) \bigg|_{\theta=0} = -E[V^2 e^{i\omega U}] = -E\{e^{i\omega U}E[V^2 |U]| = -E[2e^{i\omega U}] = -2\phi(\omega)^2.
\]
However, by (2),

\[
\frac{\partial^2}{\partial \theta^2} \psi(\omega, \theta) \bigg|_{\theta = 0} = 2\{\phi''(\omega)\phi(\omega) - \phi'(\omega)^2\},
\]

yielding the required differential equation (1).

(b) Notice that the above equation is equivalent to

\[
\frac{d}{d\omega} \left(\frac{\phi'(\omega)}{\phi(\omega)} \right) = -1.
\]

Using this fact to show that \(X, Y\) are in fact \(N(0, 1)\) variables.

Solution: Solving the differential equation (3), one has that

\[
\log \phi(\omega) = a + b\omega - \frac{1}{2}\omega^2
\]

for constants \(a, b\), whence \(\phi(\omega) = e^{-\frac{1}{2}\omega^2}\). Therefore, \(X, Y\) are Gaussian \(N(0, 1)\) r.v.'s.